FIRST PUBLIC EXAMINATION

Long Vacation 1999

Preliminary Examination in Physical Sciences

SUBJECT 3: CHEMISTRY 3: PHYSICAL CHEMISTRY

also

Preliminary Examination in Biochemistry

WEDNESDAY 22 SEPTEMBER - 9.30am

Time Allowed 2 1/2 hours

Candidates should answer all questions in Section A and any two questions in Section B.

(The numbers in square brackets indicate the weight that the Examiners expect to assign to each part of the question)

```
Molar gas constant, R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}
Planck constant, h
                                 = 6.626 \times 10^{-34} \text{ J s}
Boltzmann constant, k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}
                                 = 2.998 \times 10^8 \text{ ms}^{-1}
Speed of light, c
Avogadro number, N_A = 6.022 \times 10^{23} \text{ mol}^{-1}
                                 = 1 \text{ bar} = 1 \times 10^5 \text{ Pa}
p⊖
                                 = 9.110 \times 10^{-31} \text{ kg}
Electron mass, m.
Elementary charge, e = 1.602 \times 10^{-19} \,\mathrm{C}
Faraday constant, F = 9.648 \times 10^4 \text{ C mol}^{-1}
Atomic mass unit, m_u = 1.661 \times 10^{-27} \text{ kg}
                                 = 24.79 \text{ dm}^3 \text{ mol}^{-1} \text{ at } 298 \text{ K}
Molar volume, V<sub>m</sub>
```

You must not open this paper until instructed to do so by an invigilator.

Section A

Answer all six questions in this section

- 1. (a) Draw the phase diagram for water (as a function of pressure and temperature), identifying clearly the triple point and critical point. [5]
 - (b) Materials can be "freeze-dried" by cooling them to temperatures below 0 °C and reducing the pressure. Use your diagram to explain how such a process removes water.

 [3]
- The decomposition of hypochlorite ion in solution, shown below, obeys second order kinetics.

$$3 \text{ ClO}^-(aq) \rightarrow \text{ClO}_3^-(aq) + 2\text{Cl}^-(aq)$$

- (a) Write down the rate equation for the reaction.
- (b) If concentrations are specified in mol dm⁻³, what are the units of the rate constant? [2]

[1]

- (c) Demonstrate that a plot of 1 / [ClO-] as a function of time should be linear. [5]
- Discuss how the entropy of the system would change during each of the following reactions.
 - (i) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - (ii) $H_2(g) + I_2(g) \rightarrow 2HI(g)$
 - (iii) $CH_3COOH(aq) \rightarrow CH_3COO^-(aq) + H^+(aq)$ [3 marks each]
- Write down and explain the atomic term symbols for lithium and boron in their lowest energy electronic states.

5. For the following cell:

Pt |
$$H_2(g, p = p^{\Theta})$$
 | $H^+(aq, a = 1)$ || $Sn^{2+}(aq)$ | $Sn(s)$

- (a) Write down the cell reaction. [3]
- (b) Give the Nernst equation for the cell reaction. [3]
- (c) Calculate the change in the standard cell potential when the activity of the Sn^{2+} is changed from a = 1 to a = 0.1 at a temperature of 298 K. [3]
- 6. Discuss fully one experiment which provides evidence for quantization. [8]

Section B

Answer any two questions in this section

7. The following data relate to the base-catalysed hydrolysis of an ester E:

[E] / mol dm ⁻³	[OH-] / mol dm-3	Initial rate of reaction / 10-4 mol dm-3 s-1
0.071	0.239	0.014
0.142	0.241	0.027
0.142	0.481	0.054

(a) Determine the rate equation for the reaction.

[4]

- (b) In an experiment in which the concentration of ester was 0.24 mol dm⁻³, the initial rate of reaction was found to be 2.2 x 10⁻⁶ mol dm⁻³ s⁻¹. Determine the pH of the solution. [10]
- (c) Explain how a catalyst affects the rate of a reaction.

[7]

- (d) Explain why, even though a catalyst is not consumed during a reaction, its concentration may still appear in the rate equation. [4]
- 8. (a) Explain how the standard EMF E^{Θ} may be related to Δ , G^{Θ} , Δ , H^{Θ} and Δ , S^{Θ} for a reaction.
 - (b) For the cell

Pt |
$$H_2(g, p = p^{\Theta})$$
 | HCl (aq, $a = 1$) | AgCl (s) | Ag

 E^{Θ} is given by the equation

$$(E^{\Theta}/V) = 0.2366 - 4.856 \times 10^{-4} (T - 273) - 3.421 \times 10^{-6} (T - 273)^{2}$$

where T is in Kelvin.

(i) Write down the half reactions and the overall cell reaction.

[6]

(ii) Write down the Nernst equation for the cell.

[2]

(iii) Calculate Δ , G^{\ominus} , Δ , H^{\ominus} and Δ , S^{\ominus} and the equilibrium constant for the reaction at 298 K. [11]

ANSWER EITHER PART I OR PART II

PART I:

Nitrogen (IV) oxide and dinitrogen tetroxide are in equilibrium according to the equation

$$2NO_2 \Rightarrow N_2O_4$$

At 298 K,
$$\Delta_r H^{\Theta} = -57.2 \text{ kJ mol}^{-1}$$
 and $\Delta_r S^{\Theta} = -175.8 \text{ J K}^{-1} \text{ mol}^{-1}$

- (a) Calculate Δ , G^{\ominus} and the value of the equilibrium constant K, at 298 K. [4]
- (b) 1 mole of NO₂ is confined to a container at 298 K and allowed to reach equilibrium. If the final pressure of the equilibrium mixture is 0.06 bar, calculate the mole fraction of N₂O₄ present.
 [7]
- (c) Make a sketch showing how the Gibbs Free Energy of the system at 298 K and at a constant pressure of 0.06 bar depends on the composition of the mixture, for compositions ranging from 100% N₂O₄ to 100% NO₂. [8]
- (d) In what way does the change in Gibbs Free Energy help define the point at which a reaction has reached equilibrium? [2]
- (e) Reconcile your answer to part (d) with the value of Δ , G^{Θ} you found in part (a). [4]

PART II:

- (a) Derive, from first principles, the Clausius-Clapeyron equation, which relates the vapour pressure of a liquid to the absolute temperature. [6]
- (b) Comment as fully as possible on the data given in the table below. [19]

Liquid	Normal boiling point / K	Enthalpy of vaporization / kJ moi ⁻¹	Entropy of vaporization / J K-1 mol-1
Helium	4.21	0.84	20
Nitrogen	77.3	5.56	72
Sulphur dioxide	263.1	24.92	95
Methanol	337.8	35.27	104
Ethanoic acid	391.4	24.39	62
Sodium chloride	1738	173.7	98

Turn over

10. A particle of mass m is constrained to move in a one-dimensional square well of length L. The potential energy of the system is given as

$$V(x) = 0$$
 $0 \le x \le L$
 $V(x) = \infty$ for $x < 0$ and $x > L$

(a) Write down the Hamiltonian operator, \hat{H} for the system and show that the wavefunction

$$\psi = C \cos kx + D \sin kx$$

is an eigenfunction of
$$\hat{H}$$
. [6]

- (b) By using appropriate boundary conditions, derive expressions for the constants C, D and k and hence show that the energy of the system is quantized. [8]
- (c) Sketch the three lowest energy wavefunctions and comment on their properties. [5]
- (d) Derive a general expression for the probability that the particle will be found in the region

$$\frac{1}{2}L - \delta \leqslant x \leqslant \frac{1}{2}L + \delta \tag{6}$$