

In the applications of chemistry we are frequently concerned with how a solid phase interacts with its environment

Solid -Solid

Adhesion and coatings Functional solid state devices Nanotechnology

Solid liquid

- Electrochemistry
- Detergent action

Solid gas

• Catalysis

Thin films

In this introduction we will focus on the chemistry of the gas-solid interface

Books

- Atkins "Physical Chemistry"
- Attard "Surfaces" (Oxford chemistry primer)
- Bowker "Heterogeneous catalysis" (Oxford chemistry primer)
- Gasser "An Introduction to Chemisorption and Catalysis by Metals" (College libraries etc)

Atomic structure at solid surfaces

- Consider preparation of a surface by cleavage of a bulk single crystal
- Atomic structure will depend on how the surface is oriented w.r.t. the unit cell

Surface lies parallel to a dense atomic plane in the bulk crystal

bcc (100)

fcc (100)

 Expect to see atomically ordered smooth surfaces

Surface is tilted w.r.t. to dense crystal planes

- Atomically rough
- TSK model terrace-step-kink

Stepped Pt (544) or Pt (S) $[9(111) \times (100)]$

Stepped Pt (533) or Pt (S) $[4(111) \times (100)]$

Atomic concentration

- Area of unit cell =(0.3 x 10⁻⁹)² m²
- 1 atom per unit cell
- Therefore 1/ (0.3 x 10⁻⁹)²
- = 1.1 x 10¹⁹ atoms m⁻²
- = 1.1 x 10¹⁵ atoms cm⁻²

Order of magnitude correct for most surfaces

0.3 nm

Chemical reactivity of surfaces

 Clean surfaces are often highly reactive -"unsatisfied valence"

Therefore expect to react with ambient gaseous species

Adsorption

- Gaseous molecule becomes trapped at the surface and forms a bond to it.
- Don't confuse it with absorption!

Thermodynamics

- ∆S_{ads} = entropy of (adsorbed phase -gas phase)
- ∆H_{ads} = enthalpy of (adsorbed phase-gas phase)
- ΔS_{ads} is negative (loss of disorder)
- However so is ΔH_{ads} (exothermic process)
- So occurs spontaneously (exoergic process driven by the enthalpy of bond formation)

Adsorption Isotherms

- Consider equilibrium between adsorbed and gas phase
- Extent of adsorption will increase as i. P_A rises; ii. T falls (Le Chatelier etc.)

- θ_A = fraction of surface occupied with adsorbed A.
- Then expect $\theta_A = f$ (P_A , T)
- At a constant temperature $\theta_A = f$ (P_A)
- This relationship is known as the adsorption isotherm

Langmuir adsorption isotherm

Recap 2nd yr

adsorption rate \propto pressure \times conc. of bare surface $= k^{ads} (1 - \theta_A) p_A$ desorption rate \propto conc. of adsorbate $= k^{des} \theta_A \qquad A(g)$

- Isotherm is an equilibrium property normally understood by considering state of reactants and products.
- Above derivation does'nt identify what adsorbed phases it might apply to (all?)
- Experimental measurement of the kinetics of adsorption/desorption shows the assumptions above seldom apply!

Langmuir isotherm using a statistical mechanics approach

Surface is a uniform array of adsorption sites

- Adsorbed phase consists of species localised in a fraction θ of the available sites.
- No interaction between species on adjacent sites (i.e. random occupancy)

The configurational entropy of the adsorbed phase

• A normal "distinguishable system" with some extra configurational entropy.

• *M* sites (boxes), N molecules. $\theta = N/M$

$$S^{config} = k \ln W^{config} = k \ln \left(\frac{M \cdot (M-1)(M-2) \dots}{N!} \right)$$
$$= k \ln \left(\frac{M!}{(M-N)!N!} \right)$$

The Helmholtz energy of the adsorbed phase

 $A^{normal} = U - TS = N\varepsilon_o - NkT \ln q$ $A^{ads} = N\varepsilon_o - NkT \ln q - \frac{TS^{config}}{TS}$ $= N\varepsilon_o - NkT \ln q - kT \ln \left(\frac{M!}{(M-N)!N!}\right)$ Equation ²

Use of Stirling approx. (Inx!=xInx-x) (optional)

$$\ln\left(\frac{M!}{(M-N)!N!}\right)$$
Equation 2
$$= k \left[M \ln M - N \ln N - (M-N) \ln(M-N) \right]$$

• Inserting (2) into (1) yields A for the adsorbed phase, and differentiating with respect to N yields the chemical potential of this phase since from stat mechs (2A/2)

$$\mu = \left(\frac{\partial A}{\partial N}\right)_T$$

The result for the chemical potential
(optional)

$$\mu^{ads} = \varepsilon_o^{ads} - kT \ln q^{ads} - kT \ln \left(\frac{(M-N)}{N} \right)$$

$$= \varepsilon_o^{ads} - kT \ln \left[q^{ads} \left(\frac{1}{\theta} - 1 \right) \right]$$

$$\mu^{gas} = \varepsilon_o^{gas} - kT \ln \begin{bmatrix} q_{gas} \\ V \end{pmatrix} kT \\ p_{gas} \end{bmatrix}$$

The isotherm!

 At equilibrium μ^{gas} = μ^{ads} which yields after rearrangement

$$\theta_A = \frac{Bp_A}{1 + Bp_A}$$

"Langmuir isotherm"

