2. Kinetics in heterogeneous catalysis

- Measure dependence of rate on temperature and reactant pressures.
- Reflect conc. and kinetics of adsorbed species.

a. Pressure dependence

- "Langmuir-Hinshelwood" mechanism
 - Reaction between co-adsorbed species
 - Most common route followed by catalytic processes

$$Rate = k\theta_A \theta_B$$

$$N_{2 (g)} + 3H_{2 (g)} \rightarrow 2NH_{3 (g)}$$

$$P_{N_{2}} = \frac{B_{N_{2}}p_{N_{2}}}{1 + B_{H_{2}}p_{H_{2}}^{1/2} + B_{N_{2}}p_{N_{2}} + B_{NH_{3}}p_{NH_{3}}}$$

$$\theta_{N_{2}} = \frac{B_{H_{2}}p_{H_{2}}^{1/2}}{1 + B_{H_{2}}p_{H_{2}}^{1/2} + B_{N_{2}}p_{N_{2}} + B_{NH_{3}}p_{NH_{3}}}$$

$$Rate = k^{het}\theta_{N_{2}}\theta_{H}$$

$$= \frac{k^{het}B_{N_{2}}p_{N_{2}}B_{H_{2}}p_{H_{2}}^{1/2}}{\left(1 + B_{H_{2}}p_{H_{2}}^{1/2} + B_{N_{2}}p_{N_{2}} + B_{NH_{3}}p_{NH_{3}}\right)^{2}}$$
Langmuir-Hinshelwood equation

For many catalysts

 $\rm NH_3$ and $\rm N_2$ adsorb very weakly i.e.

 $B_{NH_3} p_{NH_3}, B_{N_2} p_{N_2} \ll 1$ H₂ adsorbs strongly i.e. $B_{H_2} p_{H_2}^{1/2} \gg 1$ So L-H equation approximates to $Rate = \frac{k^{het} B_{N_2} p_{N_2}}{B_{H_2} p_{H_2}^{1/2}}$

First order with respect to nitrogen, negative half order with respect to hydrogen

- "Eley-Rideal" mechanism
 - alternative reaction route reaction
 between gas phase and adsorbed phase
 species
 - much less common than L-H

- Temperature dependence
 - Often observe very strong deviations from Arrhenius behaviour
 - Rate increases at low T, but *decreases* at high T
 - Arises because need both vacant surface sites and adsorbed species for high rates

Catalytic oxidation of CO

- Assume A adsorbs strongly, B weakly
- Low T rate limited by vacant sites

$$Rate = k^{het} (1 - \theta_A) = k^{het} \left(1 - \frac{B_A p_A}{1 + B_A p_A} \right) \approx \frac{k^{het}}{B_A p_A}$$

$$k^{het} = Ae^{-E_{react}}/RT$$

$$Rate = \frac{A''}{p_A} \left(e^{-\left(E_{react} + \left|\Delta H_{ads}\right|\right)}/RT \right)$$

$$E^{apparent} = E_{react} + \left|\Delta H_{ads}\right|$$

 High T, rate limited by the supply of A to the surface

$$Rate = k^{het} \theta_A = k^{het} \left(\frac{B_A p_A}{1 + B_A p_A} \right) \approx k^{het} B_A p_A$$

$$k^{het} = Ae^{-E_{react}} RT$$

$$Rate = A'' p_A \left(e^{-\left(E_{react} - \left|\Delta H_{ads}\right|\right)} RT \right)$$

$$E^{apparent} = E_{react} - \left|\Delta H_{ads}\right|$$

• So activation energy drops from $E_{react} + |\Delta H_{ads}|$ to $E_{react} - |\Delta H_{ads}|$ as the temperature rises.

Measurement of the heat of adsorption

- Physisorption vs chemisorption
- Models of the surface chemical bond
- Variations with surface coverage
- Understanding surface chemical processes
- Different approaches used, since none are universally applicable

- Calorimetry
 - Heat evolved = $n_{ads} \times (-\Delta H_{ads})$
 - Does'nt need "reversibility"
 - Integral measurement
 - Main problem is with n_{ads}
 - OK for powders etc but extremely hard to set up sufficiently sensitive measurements for macroscopic materials

- Determination of isosteres (P vs T at constant θ)
 - Fit modified Clausius-Clapeyron eq.
 - Accurate determination of ΔH_{ads} as $f(\theta)$
 - Need thermodynamic reversibility OK for physisorption, but often not for chemisorption

$$\left(\frac{\partial \ln p}{\partial T}\right)_{\theta} = -\frac{\Delta H_{ads}^{\theta}}{RT^2}$$

$$\left(\frac{\ln p_2}{p_1}\right)_{\theta} = \frac{\Delta H_{ads}^{\theta}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Experimental investigation of surfaces

- Three obstacles
 - Preservation of the integrity of the surface under investigation
 - The number of atoms at the surface (10¹⁵ atoms cm⁻²)
 - The ratio of surface to bulk atoms (<10⁻⁷ for macroscopic samples

Preservation of the surface phase

 Gas molecules often react with unit probability at a solid surface.

$$Z = \frac{p}{\left(2\pi m kT\right)^{\frac{1}{2}}}$$

Z = gas flux $(m^{-2} s^{-1})$ p = pressure (Nm^{-2}) m = mass of a molecule (kg)

Pressure (bar)	Flux (m ⁻² s ⁻¹ , 28 amu, 300K)
1	2.7 × 10 ²⁷
10 ⁻⁹	2.7 × 10 ¹⁸
10 -13	2.7 × 10 ¹⁴

- Recall surfaces have around 10¹⁹ atoms m⁻²
- So may need vacuums of around 10⁻¹³ bar in "reactive systems"
- Termed "ultra-high vacuum"

Oxford "oxide MBE system"

Achieving surface sensitivity

- < 10¹⁵ atoms (per cm⁻²) i.e. 10⁻⁹ moles, 10⁷ less than in the bulk
- Sometimes can study "powders", but not normally a valid route
- Need to employ techniques which are
 - Highly sensitive
 - Only "see" the surface
 - Termed "surface sensitive"